DFT Insights into the Role of Relative Positions of Fe and N Dopants on the Structure and Properties of TiO2

نویسندگان

  • Sahar Ramin Gul
  • Matiullah Khan
  • Zeng Yi
  • Bo Wu
چکیده

The location and nature of the doped elements strongly affect the structural, electronic and optical properties of TiO₂. To tailor the band structure and modify the photoelectrochemical properties of TiO₂, a pair of dopants is selected. Fe and N atoms are inserted in the TiO₂ network at substitutional and interstitial sites with different relative distances. The main objective behind the different locations and sites of the doped elements is to banish the isolated unoccupied states from the forbidden region that normally annihilates the photogenerated carriers. Fe at the Ti site and N at the O site doped in the TiO₂ network separated at a distance of 7.805 Å provided a suitable configuration of dopant atoms in terms of geometry and band structure. Moreover, the optical properties showed a notable shift to the visible regime. Individual dopants either introduced isolated unoccupied states in the band gap or disturbed the fermi level and structural properties. Furthermore, the other co-doped configurations showed no remarkable band shift, as well as exhibiting a suitable band structure. Resultantly, comparing the band structure and optical properties, it is argued that Fe (at Ti) and N (at O) doped at a distance of 7.805 Å would strongly improve the photoelectrochemical properties of TiO₂.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Different Dopants (Cr, Mn, ‎Fe, Co, Cu and Ni) on Photocatalytic ‎Properties of ZnO Nanostructures

   ZnO structures with different dopants (1mol% Cr, Mn, Fe, Co, Cu and Ni) have been synthesized via a simple hydrothermal method using sucrose as a template. These doped ZnO nanostructures characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL). The photocatalytic property of these synthesized materials was studied by a pho...

متن کامل

Synthesis, Characterization and Investigation of Photocatalytic Activity of transition metal-doped TiO2 Nanostructures

In this work, M-doped TiO2 nanostructures (M: Fe, Co and Ni) were synthesized by reverse microemulsion method. The as-prepared products were analyzed by different techniques such as scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The effect of various dopants (Fe, Co and Ni) on ba...

متن کامل

Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

The effect of Glutamine on conductivity and energetic properties in Graphene: A DFT studies

Using the Computational methods, the interaction effect  of Glutamine Amino acid on Graphene was investigated. For this purpose, the Density Functional Theory) DFT (in the ground state of 6-31G was used, and the interaction effects of Glutamine on Graphene was investigated through attachment to two different base positions. Different parameters such as energy levels, the amount of Chemical Shif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018